Recent Advances in Orthopaedics: Innovations in Technology, Surgical Technique, and Patient-Centred Care

Nijith Ompedathil Govindan^a

a. Senior Consultant Joint Replacement, Arthroscopy & Sports Surgeon, Welcare Hospital, Kochi*

ABSTRACT

Published on 27th June 2025

Background: Orthopaedic surgery is evolving rapidly, driven by advances in minimally invasive techniques, improved implant materials, robotics and artificial intelligence (AI), and enhanced recovery after surgery (ERAS) protocols.

Aim: To provide a comprehensive review of current evidence for key orthopaedic advances and highlight innovations shaping patient outcomes.

Methods: A structured literature search of PubMed, Scopus, and Cochrane Library databases (up to June 2025) was conducted. Keywords included orthopaedics, enhanced recovery, arthroplasty, implant design, robotics, navigation, joint registries, minimally invasive surgery, arthroscopy, biologics, stem cells, platelet-rich plasma, bone bank, allografts. Systematic reviews, meta-analyses, randomized controlled trials, registry analyses, and narrative reviews were prioritised.

Results: ERAS protocols combined with ambulatory centres, prehabilitation, and online tracking systems improve perioperative recovery. Advances in implant design include anatomical sizing, patient-specific prostheses, refined biomaterials, and bioabsorbable fixation devices. Robotics and navigation systems enhance surgical precision and are shown to augment, not replace, surgeon expertise. Major global arthroplasty registries provide outcome data guiding practice. Minimally invasive surgery and arthroscopy have expanded indications, while orthobiologics and bone banking broaden treatment options for cartilage, ligament, and bone

Conclusion: Orthopaedic practice is advancing across surgical technique, implant technology, biologic therapies, and perioperative care. Integration of these innovations with multidisciplinary teams and registry-based feedback has the potential to improve patient outcomes globally.

Keywords: Orthopaedics, Enhanced Recovery, Arthroplasty, Robotics, Implant Design, Biologics, Minimally Invasive Surgery

INTRODUCTION

Musculoskeletal disorders are a leading cause of disability worldwide, driving an increasing demand for orthopaedic interventions.1 Patients now expect rapid recovery, reduced pain, and durable functional outcomes. Over the last two decades, orthopaedics has seen rapid technological and procedural evolution. Innovations include minimally invasive surgical techniques, enhanced biomaterials, robotic assistance, artificial intelligence (AI) for planning and intraoperative guidance, and enhanced recovery protocols.²

In parallel, implant design has shifted towards patientspecific solutions, improving alignment, longevity, and imaging compatibility. Orthobiologic therapies and bone banking now complement surgical reconstruction. Collectively, these advances aim to improve perioperative safety, accelerate rehabilitation, and reduce long-term complications. This review consolidates validated evidence on these developments and presents current trends in orthopaedic care.

METHODS

A comprehensive literature search was conducted using PubMed, Scopus, and Cochrane Library up to June 2025. Search terms included "orthopaedics," "enhanced recovery," "robotics," "navigation,"

Cite this article as: Govindan NO. Recent advances in orthopaedics: innovations in technology, surgical technique, and patient-centred care. Kerala Medical Journal. 2025 Jun 27;18(2):54-57.

Dr. Nijith Ompedathil Govindan, Head of the Department and Senior Consultant Joint Replacement, Arthroscopy & Sports Surgeon, Fellowship Program Director- Indian Arthroscopy Society (IAS), Welcare Hospital, Vytilla, Kochi, 682019. Ph: ₱91 9745601731, Email: drnijith@gmail.com

^{*}See End Note for complete author details

"minimally invasive surgery," "arthroscopy," "orthobiologics," "bone grafting," and "joint registry." Inclusion criteria consisted of systematic reviews, meta-analyses, RCTs, registry studies, narrative reviews, and Englishlanguage publications with focus on surgical innovations, implant design, biologics, or perioperative care. Non-peer-reviewed publications, studies with insufficient outcome data and articles limited to regional applicability were excluded.

Data extraction emphasised perioperative outcomes, implant survival, functional recovery, complications, and registry-derived evidence. References were selected for quality, relevance, and evidence level.

Enhanced Recovery After Surgery (ERAS) and **Perioperative Optimisation**

Enhanced Recovery After Surgery integrates multimodal strategies to reduce surgical stress, optimise recovery, and shorten hospital stay. Core components of ERAS include patient education, preoperative optimisation of comorbidities, multimodal analgesia, early mobilisation, and nutrition protocols. Meta-analyses show ERAS reduces hospital stay by 1-2 days, lowers transfusion requirements, and does not increase complication rates.3 Evidence supports ERAS as safe and effective when implemented by multidisciplinary teams.

Recent innovations associated with perioperative optimization include ambulatory surgical centres for same-day arthroplasty, early preoperative assessment allowing optimisation of cardiovascular, metabolic, and musculoskeletal status, prehabilitation to improve postoperative functional outcomes, intraoperative strategies such as reduced tourniquet use and minimally invasive exposure to decrease tissue trauma, and web-based platforms for monitoring rehabilitation and early detection of complications.⁴⁻⁷

Implant Design, Prosthetic Sizing, and Materials

Accurate implant fit is critical for ensuring both longevity and optimal function. Anatomical variations between ethnicities and genders necessitate advanced sizing and customization.8 Current strategies address these challenges through multiple innovations. Anatomical implant designs are tailored to the bone dimensions to achieve a more precise fit. Patient-specific instrumentation, supported by 3D imaging and printing, enables the creation of customized cutting guides and jigs that enhance surgical accuracy.9 Click or tap here to enter text.. In terms of fixation, bioabsorbable devices are being developed as alternatives to conventional titanium or cobalt-chromium systems. 10

Material refinements include the use of ceramics for bearing surfaces and titanium alloys for stems, which help reduce wear, lower the risk of metal hypersensitivity, and eliminate MRI artefacts. Recent improvements in metallurgy and porous surface design have increased the popularity of uncemented total knee arthroplasty, especially in younger patients, as they avoid cementrelated complications and show comparable mid-term outcomes to cemented implants. Collectively, these advancements reduce implant mismatch, improve biomechanical outcomes, and facilitate more reliable postoperative imaging.

Robotics, Navigation, and Artificial Intelligence

Robotic-assisted surgery and navigation systems have demonstrated significant improvements in component alignment and precision during joint arthroplasty.¹¹ Click or tap here to enter text.. The integration of artificial intelligence allows intraoperative kinematic assessment and provides data-driven decision support to guide surgical decisions. However, evidence from recent United States registry analyses indicates robotic total knee arthroplasty do not confer an improvement over conventional total knee arthroplasty with regards to common causes of early revision.¹² Although integration into standard operating theatres has become increasingly feasible, questions regarding cost-effectiveness and the durability of long-term outcomes remain under active investigation. 13 Clinical experience suggests robotic systems serve to augment surgeon precision but is not intended to replace human expertise.

Joint Registries

Global joint registries play a pivotal role in providing real-world outcomes that guide surgical practice. Largescale databases such as the Swedish Hip Arthroplasty Register, the Australian Orthopaedic Association National Joint Replacement Registry, and the American Joint Replacement Registry (AJRR) collectively monitor millions of procedures, offering valuable insights into implant survival, complication profiles, and revision rates. 14-16 The scope of these registries has expanded beyond arthroplasty to include arthroscopy, enabling the systematic collection of outcomes in ligament reconstruction and cartilage repair.¹⁷ This broadened coverage supports continuous refinement of surgical protocols and strengthens evidence-based decisionmaking in orthopaedic practice.

Minimally Invasive and Arthroscopic Surgery

Minimally invasive orthopaedic surgery has transformed practice by reducing soft tissue disruption, blood loss,

and recovery time. Arthroscopy, once limited to diagnostics and ligament procedures, is now applied to intra-articular fracture fixation and spine surgery. 18,19 Minimally Invasive Plate Osteosynthesis (MIPO) techniques emphasize anatomical reduction and tissue preservation, leading to faster rehabilitation, lower infection rates, and fewer complications. Advances in imaging, navigation, and specialized instruments have expanded their scope, while challenges such as steep learning curves and longer operative times remain.²⁰ Overall, minimally invasive strategies are increasingly recognized as central to modern orthopaedic surgery.

Orthobiologics and Injectable Therapies

Biologic therapies are increasingly being integrated into orthopaedic practice for cartilage, ligament, and bone repair. Platelet-rich plasma (PRP) has generated considerable interest, although clinical studies report mixed outcomes, with some suggesting effects comparable to placebo.²¹ Stem cell-based interventions are under active investigation for cartilage regeneration and the treatment of non-union fractures, offering the potential for true tissue restoration.²² Experimental strategies such as chondrofillers aim to augment cartilage repair, though evidence remains preliminary. Established techniques, including autologous chondrocyte implantation (ACI) and the osteochondral autograft transfer system (OATS), continue to demonstrate reliable clinical success and durable functional outcomes.²³ Collectively, these approaches highlight a growing shift toward biologically driven therapies that complement traditional surgical techniques and may improve long-term tissue healing.

Bone Banking and Allografts

Bone banks provide essential resources for orthopaedic reconstruction, supplying structural and cancellous allografts, tendons for ligament reconstruction, and meniscal grafts.²⁴ Advances in sterilization and preservation techniques have enhanced graft safety and incorporation, improving outcomes in complex procedures such as revision arthroplasty, ligament reconstruction, and cartilage or meniscal restoration. By ensuring the availability of high-quality biologic materials, bone banks complement surgical innovations and expand treatment options for challenging reconstructive cases. These developments underscore the critical role of tissue banking in modern orthopaedics, bridging biologic therapies and advanced surgical interventions to optimize patient outcomes.

DISCUSSION

Recent advances in orthopaedics represent a multidimensional evolution, driven by the integration of surgical precision, implant technology, biologic augmentation, and perioperative optimization. Enhanced Recovery After Surgery (ERAS) protocols and prehabilitation strategies have been shown to accelerate functional recovery, reduce postoperative complications, and shorten hospital stays, reflecting a growing emphasis on patient-centered perioperative care. Innovations in implant design, including anatomical tailoring, patient-specific instrumentation, and the use of advanced biomaterials such as ceramics and titanium alloys, have significantly improved long-term implant survival and reduced complications related to wear, hypersensitivity, and imaging artefacts. The incorporation of robotics and navigation systems further enhances surgical accuracy, enabling precise component placement and data-driven intraoperative decision-making, while remaining complementary to human expertise. Minimally invasive surgery and arthroscopic approaches expand the range of treatable conditions and prioritize the preservation of native anatomy, minimizing soft tissue disruption and facilitating faster rehabilitation. Biologic therapies, especially orthobiologics such as platelet-rich plasma, stem cell interventions currently lack robust scientific evidence to support their clinical efficacy. Autologous chondrocyte implantation (ACI) and the osteochondral autograft transfer system (OATS), alongside resources from bone banks, provide novel avenues for tissue repair, ligament reconstruction, and cartilage or meniscal restoration. Finally, global joint registries offer largescale, real-world outcome data, supporting continuous evidence-based refinement of surgical protocols and enabling the identification of underperforming implants, optimization of techniques, and benchmarking of clinical practice. Collectively, these advances underscore a shift toward precision, personalization, and biologically informed strategies in modern orthopaedics, where technology, surgical expertise, and data converge to enhance patient outcomes.

CONCLUSION

Orthopaedics is undergoing rapid transformation, driven by technological innovation, biologic advances, and evolving perioperative strategies. Integration of Enhanced Recovery After Surgery (ERAS) protocols, anatomically optimized implants, robotic-assisted and

navigated surgery, minimally invasive and arthroscopic techniques, orthobiologics, and bone banking can significantly improve patient outcomes, from faster recovery to better long-term function. Achieving these benefits requires multidisciplinary collaboration among surgeons, rehabilitation specialists, and allied healthcare professionals. Continuous feedback from global registries supports evidence-based practice, ensuring innovations are applied safely and effectively. Collectively, these developments reflect a shift toward precision, personalization, and data-driven orthopaedic care.

END NOTE

Author Information

1. Dr. Nijith Ompedathil Govindan, Head of the Department and Senior Consultant Joint Replacement, Arthroscopy & Sports Surgeon, Fellowship Program Director- Indian Arthroscopy Society (IAS), Welcare Hospital, Vytilla, Kochi, 682019.

Conflict of Interest: None declared

REFERENCES

- 1. Gill TK, Mittinty MM, March LM, Steinmetz JD, Culbreth GT, Cross M, et al. Global, regional, and national burden of other musculoskeletal disorders, 1990-2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5(11).
- 2. Liang W, Zhou C, Bai J, Zhang H, Jiang B, Wang J, et al. Current advancements in therapeutic approaches in orthopedic surgery: a review of recent trends. Vol. 12, Frontiers in Bioengineering and Biotechnology. 2024.
- 3. Zhang Q, Chen Y, Li Y, Liu R, Rai S, Li J, et al. Enhanced recovery after surgery in patients after hip and knee arthroplasty: a systematic review and meta-analysis. Postgrad Med J. 2024;100(1181).
- 4. Sershon RA, Ast MP, DeCook CA, Della Valle CJ, Hamilton WG. Advanced Concepts in Outpatient Joint Arthroplasty. Journal of Arthroplasty. 2024;39(9).
- 5. Ndjonko LCM, Jose JM, Nair NS, Paska J, Tagoe JA, Hoang R, et al. Prehabilitation for Total Knee Arthroplasty: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Journal of Orthopaedic Reports. 2025 Apr 1;4(1).
- 6. Ahmed I, Chawla A, Underwood M, Price AJ, Metcalfe A, Hutchinson CE, et al. Time to reconsider the routine use of tourniquets in total knee arthroplasty surgery: An abridged version of a Cochrane systematic review and meta-a nalysis. Vols. 103-B, Bone and Joint
- 7. Pritwani S, Shrivastava P, Pandey S, Kumar A, Malhotra R, Maddison R, et al. Mobile and Computer-Based Applications for Rehabili-

- tation Monitoring and Self-Management After Knee Arthroplasty: Scoping Review. Vol. 12, JMIR mHealth and uHealth. 2024.
- 8. Mukhopadhaya J, Kashani A, Kumar N, Bhadani JS. Evaluation of Anthropometric Measurements of the Aspect Ratio of Knee in Indian Population and its Correlation with the Sizing of Current Knee Arthroplasty System. Indian J Orthop. 2023;57(1).
- 9. Zhou F, Xue F, Zhang S. The application of 3D printing patient specific instrumentation model in total knee arthroplasty. Saudi J Biol Sci. 2020;27(5).
- 10. Pina S, Ferreira JMF. Bioresorbable plates and screws for clinical applications: A review. J Healthc Eng. 2012;3(2).
- 11. Deckey DG, Rosenow CS, Verhey JT, Brinkman JC, Mayfield CK, Clarke HD, et al. Robotic-assisted total knee arthroplasty improves accuracy and precision compared to conventional techniques. Vols. 103-B, Bone and Joint Journal. 2021.
- 12. Kirchner GJ, Stambough JB, Jimenez E, Nikkel LE. Robotic-assisted TKA is Not Associated with Decreased Odds of Early Revision: An Analysis of the American Joint Replacement Registry. Clin Orthop Relat Res. 2024;482(2).
- 13. Wah JNK. The rise of robotics and AI-assisted surgery in modern healthcare. Vol. 19, Journal of Robotic Surgery. Springer Nature;
- 14. Lewis PL, Gill DR, McAuliffe MJ, McDougall C, Stoney JD, Vertullo CJ, et al. Hip, Knee and Shoulder Arthroplasty: 2024 Annual Report [Internet]. Adelaide, South Australia; 2024 Oct.
- 15. W-Dahl A, Kärrholm J, Oskar CR, Perna J, Arani I, Mohaddes M, et al. The Swedish Arthroplasty Register Annual report 2024. In.
- 16. The Eleventh Annual Report of the AJRR on Hip and Knee Ar-
- 17. Beit Ner E, Nakamura N, Lattermann C, McNicholas MJ. Knee registries: state of the art. Vol. 7, Journal of ISAKOS. 2022.
- 18. Dei Giudici L, Faini A, Garro L, Tucciarone A, Gigante A. Arthroscopic management of articular and peri-articular fractures of the upper limb. EFORT Open Rev. 2016;1(9).
- 19. Söylemez MS, Kemah B, Poyanli O. Arthroscopy-Assisted Reduction and Fixation of Femoral Head and Acetabulum Fractures: A Systematic Review of the Literature. Vol. 14, Orthopaedic Surgery. 2022
- 20. Song X. Advancements in Minimally Invasive Techniques for Joint Replacement in Orthopedic Surgery. Journal of Innovations in Medical Research. 2023;2(11).
- 21. Jamal MS, Hurley ET, Asad H, Asad A, Taneja T. The role of Platelet Rich Plasma and other orthobiologics in bone healing and fracture management: A systematic review. Vol. 25, Journal of Clinical Orthopaedics and Trauma. 2022.
- 22. Akpancar S, Tatar O, Turgut H, Akyildiz F, Ekinci S. The Current Perspectives of Stem Cell Therapy in Orthopedic Surgery. Arch Trauma Res. 2016;5(4).
- 23. Muthu S, Viswanathan VK, Chellamuthu G, Thabrez M. Clinical effectiveness of various treatments for cartilage defects compared with microfracture: a network meta-analysis of randomized controlled trials. Vol. 4, Journal of Cartilage and Joint Preservation.
- 24. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10).